Marshall Mueller, Murphy James M, and Abiy Tasissa. “Locality Regularized Reconstruction:
Structured Sparsity and Delaunay Triangulations”. In: Sampling Theory, Signal Processing, and Data
Analysis (2024).
Journal articles
Samuel Lichtenberg and Abiy Tasissa. “Localization from structured distance matrices via low-rank matrix recovery
”. In: IEEE
Transactions of Information Theory (2024).
Abiy Tasissa, Emmanouil Theodosis, Bahareh Tolooshams, and Demba Ba. “Discriminative reconstruction
via simultaneous dense and sparse coding”. In: Transactions on Machine Learning Research
(2024).
Samuel Lichtenberg and Abiy Tasissa. “A dual basis approach to multidimensional scaling”. In:
Linear Algebra and its Applications 682 (2024), pp. 86–95.
Abiy Tasissa, Pranay Tankala, James M Murphy, and Demba Ba. “K-Deep Simplex: Manifold
Learning via Local Dictionaries”. In: IEEE Transactions on Signal Processing (2023).
Demba Ba, Akshunna S Dogra, Rikab Gambhir, Abiy Tasissa, and Jesse Thaler. “SHAPER:
Can You Hear the Shape of a Jet?” In: Journal of High Energy Physics (2023)
[PDF]
Ahmed Ali Abbasi, Abiy Tasissa, and Shuchin Aeron. “R-local unlabeled sensing: A novel graph
matching approach for multiview unlabeled sensing under local permutations”. In: IEEE Open Journal
of Signal Processing 2 (2021), pp. 309–317
[PDF]
Abiy Tasissa and Rongjie Lai. “Low-rank matrix completion in a general non-orthogonal basis”. In:
Linear Algebra and its Applications 625 (2021), pp. 81–112
[PDF]
Abiy Tasissa and Rongjie Lai. "Exact reconstruction of euclidean distance geometry problem using
low-rank matrix completion”. In: IEEE Transactions on Information Theory 65.5 (2018), pp. 3124–3144
[PDF]
Abiy F Tasissa, Martin Hautefeuille, John H Fitek, and Ra´ul A Radovitzky. “On the formation
of Friedlander waves in a compressed-gas-driven shock tube”. In: Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences 472.2186 (2016), p. 20150611
[PDF]
Peer-reviewed conference proceedings
Scott Fullenbaum, Marshall Mueller, Abiy Tasissa, and James M Murphy. “Nonlinear unmixing
of hyperspectral images via regularized Wasserstein dictionary learning.” In: 2024 IEEE International
Geoscience and Remote Sensing Symposium IGARSS. IEEE. 2024. To appear.
Scott Fullenbaum, Marshall Mueller, Abiy Tasissa, and James M Murphy. “Hyperspectral image
clustering via learned representation in Wasserstein space”. In: 2024 IEEE International Geoscience and
Remote Sensing Symposium IGARSS. IEEE. 2024. To appear.
Marshall Mueller, Shuchin Aeron, James M Murphy, and Abiy Tasissa. “Geometrically Regularized
Wasserstein Dictionary Learning”. In: Topological, Algebraic and Geometric Learning Workshops 2023.
PMLR. 2023, pp. 384–403
Mattthew E Werenski, Ruijie Jiang, Abiy Tasissa, Shuchin Aeron, and James M Murphy. “Measure
Estimation in the Barycentric Coding Model”. In: International Conference on Machine Learning.
PMLR. 2022, pp. 23781–23803
[PDF]
Ahmed Ali Abbasi, Abiy Tasissa, and Shuchin Aeron. “r-Local Unlabeled Sensing: Improved
Algorithm and Applications”. In: ICASSP 2022-2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE. 2022, pp. 5593–5597
[PDF]
Abiy Tasissa, Pranay Tankala, and Demba Ba. “Weighed l1 on the Simplex: Compressive Sensing
Meets Locality”. In: 2021 IEEE Statistical Signal Processing Workshop (SSP). IEEE. 2021, pp. 476–480
[PDF]
Abiy Tasissa, Duc Nguyen, and James M Murphy. “Deep diffusion processes for active learning
of hyperspectral images”. In: 2021 IEEE International Geoscience and Remote Sensing Symposium
IGARSS. IEEE. 2021, pp. 3665–3668
[PDF]
Peer-Reviewed workshop papers
Chandler Mack Smith, Samuel P Lichtenberg, HanQin Cai, and Abiy Tasissa. “Riemannian
Optimization for Euclidean Distance Geometry”. In: OPT 2023: Optimization for Machine Learning.
2023
Jonathan Huml, Abiy Tasissa, and Demba Ba. “Sparse, Geometric Autoencoder Models of V1”.
In: NeurIPS 2022 Workshop on Symmetry and Geometry in Neural Representations. 2022
[PDF]