
FUNCTION APPROXIMATION AND THE REMEZ ALGORITHM

ABIY TASISSA

Abstract. The Remez exchange algorithm is explained. An implementation in Python is
tested on different test functions. We make a comparison with SLSQP(Sequential Least Squares
Programming) optimizer.

Key words. Remez exchange, Minimax polynomial, polynomial interpolation

1. Overview. Given a set of data points and values measured at these points,
it is of interest to to determine the function that does a ‘good’ approximation. This
problem belongs to the realm of function approximation or interpolation theory and
finds its use in scientific computations[7]. In the past, these problems were handled
using complicated tables and the evaluations were done using calculators or just by
hand[4]. To increase the number of significant digits, it meant more manual work to
be done. With the coming of computers, the computations were very fast and there
was no need to store values as things could be computed on the fly.

Approximating functions by rational functions is one class of problems in approx-
imation theory. We are interested in the approximation of a function by a rational
function in the L∞ norm. That is we want to minimize the maximum vertical dis-
tance between the function in consideration and a rational function. This is called
the Minimax Approximation[7]. The theoretical framework for this was originally
done by Chebyshev[16]. He stated what is called equioscillation theorem that gave
a necessary and sufficient condition for a minimax polynomial/rational function[7].
By 1915, all the theoretical results regarding Minimax approximations had been es-
tablished [19]. However, as we will see in later sections, the theoretical tools are
useful but don’t lead to any feasible way to find the Minimax rational function. In
fact, if we are considering polynomials of degree above 1, constructing the minimax
rational function is quite complicated[7]. In a series of three papers, a Russian mathe-
matician by the name of Remez introduced an algorithm that computes the minimax
approximation[12][13][14]. Remez algorithm became a useful tool in the branches of
science and engineering and was used for problems from different fields. One signifi-
cant application was employing the algorithm for the design of a filter first introduced
by Parks and McClellan [11].

Historically, minimax rational approximations were used to representing special
functions on a computer[5]. This is because for special functions it might be desirable,
from a computational point of view, to do the computation of their polynomial and
rational approximations as opposed to dealing with functions themselves. In fact, in
the early days of numerical computing, minimax approximations played that role[19].
Minimax polynomial and Rational approximations were used for example in the de-
sign of FUNPACK in 1970[5].

The goal of this paper is to give a brief overview of Minimax approximation and
Remez algorithm with the focus on the implementation and how it compares with a
competing nonlinear algorithm.

1

2 Abiy Tasissa

2. Introduction and examples. Given a function f(x) on some interval [a, b]
where we know its values on some finite set of points, a simple interpolation is a
polynomial that passes exactly through these points. There are three important
questions to be considered in the process of the interpolation[9]:

1. How smooth is the function f?
2. How many points do we need and where should the points be located at?
3. How do we measure the error between the polynomial and the function f?

Assume we have a reasonably smooth function. Mathematically, the notion of
the measure of the error implies a particular choice of norm. Let’s define the error as
the maximum vertical distance between the polynomial and the function f . Formally
this represents the L∞ norm. The question of where the points should be located is
a settle issue which was originally considered by P. L. Chebyshev in 1853[2]. We are
interested, given some space, if we can find a polynomial that minimizes the error
between the polynomial and the function in consideration in the L∞ sense. Such a
polynomial, if it exists, is called the minimax polynomial and the approximation of
f(x) in the the L∞ sense is known as a Minimax approximation. Chebyshev showed
that there exists a unique minimax polynomial. He also put forth a sufficient condi-
tion for what it means to be a minimax polynomial. From a theoretical point of view,
this concludes Minimax approximation. However the task of constructing a minimax
polynomial is not trivial. For a given function f , Remez algorithm is an efficient
iterative algorithm that constructs a minimax polynomial

However as simple as they are, polynomials on their own don’t capture all the
classes of functions we want to approximate[10]. For that, we want to consider ratio-
nal minimax approximation. In the same sense we discussed above, the Chebyshev
condition gives us a criteria for a minimax rational function and the Remez algorithm
has a method to deal with rational approximations. In this paper, our focus will be
on rational approximation but in explaining the basics of the Remez method, we find
it easier to start with the simplest case of polynomial approximation and generalize
later on.

The structure of the paper is as follows. We discuss Chebychev nodes in section
3. In section 4 we introduce the Minimax approximation for polynomials. In section
5 and 6, we describe the Remez algorithm for polynomials. In section 7, we use
the developed ideas and deal with the case of discrete data approximation using
rational functions and explain our implementation in python. We then demonstrate
the implementation on test functions and make comparisons with SLSQP(Sequential
Least Squares Programming) optimizer in section 8. We conclude in section 9.

3. Chebychev nodes. As mentioned in the introduction, the location of the
interpolation points is an important consideration in polynomial approximation. In-
tuitively one might expect that equispaced points in a given interval are ideal for
polynomial interpolation. However such nodes are susceptible to what is known as
the Runge Phenomenon, which are large oscillations that happen at the end of the
intervals[6]. One might consider circumventing this problem by adding more nodes
hence a polynomial of higher degree but unfortunately the problem doesn’t disappear.
In fact, the error grows exponentially at the end intervals[6]. Hence the choice of inter-
polation points is more complicated than it appears at first sight and a wrong choice
can lead to erroneous and meaningless results. Aside from the Runge Phenomenon,
another consideration is minimizing the interpolation error. That is, we want inter-

Function Approximation and the Remez Algorithm 3

polation points such that the polynomial passing through the points is as close as
possible to the function. The solution for these problems are the Chebychev nodes.
They avoid the Runge phenomenon and they do minimize the interpolation error in
the following way[3]. Given a function f in the interval [a, b], n points x0, x1, . . . , xn,,
and the interpolation polynomial Pn, the interpolation error at x is given by

E(x) = f(x)− p(x) =
1

n+ 1!
f (n+1) (ξ)

n∏
i=0

(x− xi)

for some ξ in [a, b]. If we want to minimize this error, we don’t have any control on
the 1

n+1!f
(n+1)(ξ) term since we don’t know the function f nor can we specify the

value ξ. So in minimizing the error, we consider the minimization of

n∏
i=0

(x− xi)

The Chebyshev nodes minimize the product above. As we will see in the next section,
when one has the flexibility in picking the interpolation points, the Chebyshev nodes
are ideal. In an interval [a, b] for an polynomial interpolant of degree n − 1, the
Chebyshev nodes are given by

(3.1) xi =
1

2
(a+ b) +

1

2
(b− a) cos

(
2i− 1

2n
π

)
, i = 1, . . . , n

4. Minimax Approximation. In approximating functions, polynomials are
commonly used. This is because an arbitrary function f(x) can be approximated
by polynomials as close as we want. This fact follows from the Stone-Weistrass theo-
rem [15]

Theorem 4.1. If f is a continuous complex function on [a, b], there exists a
sequence of polynomials Pn such that

lim
n→∞

Pn(x) = f(x)

uniformly on [a, b]. If f is real, the Pn may be taken real.
In Minimax approximation, we are trying to find the closest polynomial of degree

≤ n to f(x), closest being in the L∞ sense. Formally the minimax polynomial P ∗n(x)
can be defined as follows[8]:

E∗ = max
a≤x≤b

∣∣P ∗n(x)− f(x)
∣∣ ≤ max

a≤x≤b

∣∣Pn(x)− f(x)
∣∣,

where Pn(x) is any polynomial of degree n. That is among polynomials of degree ≤ n,
we are trying to find the polynomial that minimizes the absolute error. We can also
define the near-minimiax polynomial[8] Qn(x) as any polynomial defined as

ε = max
a≤x≤b

∣∣P ∗n(x)−Qn(x)
∣∣

and where ε is sufficiently small. To make matters clear, let’s try to see the error
between the near-minimax polynomial and the function f . We claim that

max
a≤x≤b

∣∣Qn(x)− f(x)
∣∣ ≤ E∗ + ε

4 Abiy Tasissa

The proof is as follows.
Proof.

max
a≤x≤b

∣∣Qn(x)− f(x)
∣∣ = max

a≤x≤b

∣∣(Qn(x)− P ∗n(x)
)

+
(
Pn(x)∗ − f(x)

)∣∣
Using triangle’s inequality, we get

max
a≤x≤b

∣∣Qn(x)− f(x)
∣∣ ≤ max

a≤x≤b

∣∣Qn(x)− Pn(x)∗
∣∣+ max

a≤x≤b

∣∣Pn(x)∗ − f(x)
∣∣ ≤ E∗ + ε

as desired.
The implication of the near-minimax polynomial can be described as follows.

When we do the Minimax approximation on a computer, we don’t get the exact
minimax polynomial due to numerical errors. As such for the practical case, for a
very small ε, Qn(x) is a very good approximation for the Minimax polynomial. When
ε
E∗ ≤ 1

10 the near-minimax and the minimax polynomial are almost identical[8].
Chebyshev showed that in approximating a function f(x) on some interval [a, b],

there exists a unique minimax polynomial P ∗n(x) of degree n and also put a criteria for
the minimax polynomial [2]. This criteria, referred as the oscillation theorem, states:

Theorem 4.2. Suppose that f(x) is continuous in [a, b]. The polynomial P ∗n(x)
is the minimax polynomial of degree n if and only if there exist at least n + 2 points
in this interval at which the error function attains the absolute maximum value with
alternating sign. Formally,

a ≤ x0, x1, ..., xn+1 ≤ b
f(xi)− P ∗n(xi) = (−1)iE∗ for i = 0, 1, ..., n+ 1

E∗ = ± max
a≤x≤b

∣∣f(x)− P ∗n(x)
∣∣

The above theorem is a sufficient condition in that any polynomial that satisfies the
above condition is a minimax polynomial. For a polynomial of degree n ≤ 1, the con-
struction of the minimax polynomial is analytically tractable as shown in the example
below.

Example : Compute the minimax polynomial of degree 1 for f(x) = ex on the
interval [0, 1].

Since ex is a convex function, we know that the extrema of the error function
occur at x = 0, x = 1 and x = x1 where 0 ≤ x1 < 1. The equation of the linear
polynomial can be written as P1(x) = mx+ c. Hence the error function is given by

E(x) = ex − (mx+ c)

Hence at x1 set E′(x) = 0 and we get m = ex1 . Now we enforce the oscillation criteria
as follows at the three points

e0 − (0 + c) = E(4.1)

ex1 − (mx1 + c) = −E(4.2)

e1 − (m+ c) = E(4.3)

Using 4.1 and 4.3, we get

m = e− 1 ≈ 1.7183

Function Approximation and the Remez Algorithm 5

and using 4.2 and 4.3, we get

c =
1

2

(
m−mx1 + e1 −m

)
≈ 0.8941

Therefore the linear minimax polynomial is given by P1(x) = 1.7183x+ 0.8941. Fig.
4.1 shows the function and the minimax polynomial.

However the reader should note that being able to find a minimax polynomial as in
the example above is a rare event. When the degree of the interpolating polynomial is
≥ 2, the process above becomes complicated and evaluation of the proper polynomial
coefficients doesn’t lead to an explicit solution. As such one has to resort to an
algorithm of some sort. In our case, we use the Remez algorithm which is an iterative
algorithm that computes the minimax polynomial. We discuss the algorithm in the
next section.

Fig. 4.1. A linear minimax Polynomial for ex. This is the only case we can construct the
minimax polynomial. For polynomial of degree ≥ 1, one has to resort to an algorithm

5. Remez Algorithm. The Remez algorithm is due to a Russian mathemati-
cian Evgeny Remez who published the result in 1934[18]. It is an efficient iterative
algorithm that computes the minimax polynomial. To initialize the algorithm, we
need a set of n + 2 points in the interval [a, b]. One could choose different initial
points but a common choice is the Chebyshev nodes. This is because, as we discussed
earlier, the Chebyshev nodes are not prone to the Runge phenomenon and minimize
the interpolation error. Hence the polynomial that passes through the Chebyshev
nodes is a good initial estimate for the minimax polynomial. Let the polynomial
Pn(x) passing through the Chebyshev nodes be:

Pn(x) = b0 + b1x
1 + ...+ bnx

n

where b0, b1, . . . , bn are the coefficients. Now we want to force the oscillation criteria on
this polynomial. That is we want the error between the polynomial and the function

6 Abiy Tasissa

f to oscillate alternatively at the Chebyshev nodes. For that, we we write the system
of equations below:

b0 + b1x
1
i + ...+ bnx

n
i + (−1)iE = f(xi) for i = 0, 1, 2, ..., n+ 1

We can write this in a matrix form as follows

1 x0 x20 · · · xn0 E
1 x1 x21 · · · xn1 −E
1 x2 x22 · · · xn1 E
...
1 xn+1 x2n+1 · · · xnn+1 (−1)iE

b0
b1
...
bn
E

 =

f(x0)
f(x1)

...
f(xn+2)

We can solve this (n + 2)(n + 2) system to find the coefficients b0, b1, ..., bn, E. We
have now enforced the oscillation criteria but note that the error E is not necessarily
the extrema of the error function. For that reason, we need to move to a new set
of points. This leads us into the second step of the algorithm called the exchange step.

What we have so far is an error function that alternates in sign at the n + 2
points. From the intermediate value theorem, it follows that the error function has
n+1 roots. We compute the roots using any numerical method and consider the n+2
intervals

[a, z0], [z0, z1], [z1, z2]..., [zn−1, zn], [zn, b]

where z0, z1, . . . , zn are the n + 1 roots. For each interval above, we find the point
at which the error functions attains its maximum or minimum value. We can do this
by differentiating the error function and locating the minimum or maximum in each
interval. If it happens that the minimum or maximum doesn’t exist, we compute the
value of the error at the two end points and take the one with the largest absolute
value. This provides us with a new set of points

x∗0, x
∗
1, . . . x

∗
n+1

This new set of points will be used in the second step of iteration. We continue the
iteration until a stopping criteria is met.

At the end of each iteration, we obtain a new set of control points. We evaluate
the error at these control points. Let Em = mini |Ei| and EM = maxi |Ei|. As we
converge and approach the minimax polynomial, the difference between the old and
new set of control points is minimized. Hence a reasonable stopping criteria is to stop
the iteration when

(5.1) EM = αEm

where α is some constant but not arbitrary. We choose α = 1.05 but anything closer
to 1 is a reasonable choice.

Before we discuss the implementation of the Remez algorithm in Python, we
summarize the main steps.

1. For a given function f(x) on an interval [a, b], specify the degree of interpo-
lating polynomial

Function Approximation and the Remez Algorithm 7

2. Compute the n+ 2 Chebyshev points using 3.1 i.e x0, x1, . . . xn+1.
3. Enforce the oscillation criteria by solving the (n+ 2)(n+ 2) systems of equa-

tions below.
1 x0 x20 · · · xn0 E
1 x1 x21 · · · xn1 −E
1 x2 x22 · · · xn1 E
...
1 xn+1 x2n+1 · · · xnn+1 (−1)iE

b0
b1
...
bn
E

 =

f(x0)
f(x1)

...
f(xn+2)

We get b0, b1, . . . , bn+1, E.

4. Form a new polynomial Pn with the above coefficients.

Pn(x) = b0 + b1x
1 + . . . bnx

n

5. Compute the extremes of the error function

Pn(x)− f(x)

This will give a new set of control points x∗0, x
∗
1, . . . x

∗
n+2.

6. If the stopping criteria is met 5.1, then stop the iteration. If not use the new
control points and proceed to step 3.

Despite the choice of initial points, it has been shown that the Remez algorithm has
has a quadratic convergence [20, 8]. This summarizes the Remez algorithm. In the
next section, we discuss how the ideas discussed in this and previous sections could
be applied to rational minimax approximations.

6. Rational Minimax Approximation for Discrete Data. In this paper,
our interest is to find a rational approximation given a discrete number of points and
their corresponding values. This problem is natural since we usually don’t have a
priori the function we want to approximate. All we have is data points and measure-
ments and using this we want to find the best approximation. In rational minimax
approximation, we are trying to find

R(x) =
p(x)

q(x)
=

∑m
i=0 aix

i∑n
i=0 bix

i

that is we want to find polynomial p(x) and q(x) of degree m and n respectively.
We can always normalize and choose b0 = 1 and this leads us to write the minimax
problem using Chebyshev condition as follows:

(6.1) f(x)−
∑m
i=0 aix

i∑n
i=0 bix

i
= (−1)E (i = 0, 1,,m+ n+ 1)

Note that since we chose b0 = 1, we have m+n+1 unknowns as opposed to n+m+2
unknowns. The ideas developed earlier could be easily extended to this case as will
see below. This is mainly due to the fact that the equioscillation theorem is not
only restricted for polynomials. For a rational minimax approximation we have the
following theorem [10]

Theorem 6.1. Suppose that f(x) is continuous in [a, b]. The rational function
R∗n+m(x) is the minimax rational if and only if there exist at least m + n + 2 points

8 Abiy Tasissa

in this interval at which the error function attains the absolute maximum value with
alternating sign. Formally,

a ≤ x0, x1, ..., xn+1 ≤ b

f(x)−
∑m
i=0 aix

i∑n
i=0 bix

i
= (−1)E (i = 0, 1,,m+ n+ 1)

E∗ = ± max
a≤x≤b

∣∣f(x)−R∗n+m(x)
∣∣

With this, we are ready to describe the Remez algorithm for rational functions
with discrete number of data. Assume we have x0, x1, ..., xr data points and the cor-
responding values y0, y1, ..., yr. Given this data, we want to find the rational minimax
approximation. Remez’s algorithm could be modified and we can summarize it as
follows:

1. Specify the degree of interpolating rational function i.e m and n.
2. Pick m+ n+ 2 points from the data points x0, x1, ..., xr. Note that these are

neither Chebyshev nodes nor have any particular property.
3. Enforce the oscillation criteria by considering Equation. 6.1. However no-

tice that unlike the case of polynomials, this is no longer a linear system of
equations since we have the error term multiplying the polynomial in the de-
nominator. However, we can solve these equations iteratively by linearizing
the equation 6.1 and obtaining the following iteration formula[1]

(
(−1)kE0 − f(x)

) n∑
i=1

bix
i + (−1)kE+

m∑
i=0

aix
i = yi (i = 0, 1,,m+n+ 1)

Note that E0 is the initial guess. An initial guess E0 = 0 is a good starting
point. We do the iteration till E converges to a stable value and finish the
step by solving for a0, a1, ..., b1, b2, ...bn and E. Here is the matrix we solve
at every step of the iteration.

1 x0 x20 .. xm0 .. (E0 − y0)x0 (E0 − y0)xn0 E
1 x1 x21 .. xm1 .. (E0 − y1)x1 −1(E0 − y1)xn1 E
1 x2 x22 .. xm2 .. (E0 − y2)x2 (E0 − y2)xn2 E
...
1 xd x2d .. xnd .. (E0 − y2)xd (−1)d(E0 − y2)xnd E

a0
a1
...
b1

b2
...

bn
E

=

y0
y1
...
yd

where d = n+m+ 2. After solving this, we get a0, a1, ..., b1, b2, ...bn and E.
4. Form a new rational function Rn with the above coefficients.

Rn(x) = f(x)−
∑m
i=0 aix

i∑n
i=0 bix

i
= (−1)E

5. Compute the error function

Rn(x)− f(x)

Function Approximation and the Remez Algorithm 9

Now to find the a new set of control points, we do something similar to the
Remez exchange and end with new points x∗0, x

∗
1, . . . x

∗
m+n+2 as explained in

step 6.
6. If no residual is numerically greater than |E|, we are done. If not, find the

local extreme of the residuals. If we find a local extrema ri at xi that is not
one of the nodes in the set of original nodes, then replace it the nearest x in
the original set of nodes with the condition that the residual is of the same
sign.

7. Once we have all the new control points, proceed(go back) to step 3.

7. Implementation. The Remez algorithm was implemented in Python in about
100 lines of code. To get the coefficients of the polynomial and the error in the third
step of the algorithm, we use the solve method in the linear algebra package in SciPy.

b=scipy.linalg.solve(P,y)

where we solve

1 x0 x20 .. xm0 .. (E0 − y0)x0 (E0 − y0)xn0 E
1 x1 x21 .. xm1 .. (E0 − y1)x1 −1(E0 − y1)xn1 E
1 x2 x22 .. xm2 .. (E0 − y2)x2 (E0 − y2)xn2 E
...
1 xd x2d .. xnd .. (E0 − y2)xd (−1)d(E0 − y2)xnd E

a0
a1
...
b1

b2
...

bn
E

=

y0
y1
...
yd

Veidinger proved that the matrix above is always invertible i.e (n + 2) linear equa-
tions are independent[20]. Hence we will always get a solution i.e a b vector b =
b0, b1, . . . , bn, E.

8. Results and Comparison with SLSQP. We compare the Remez imple-
mentation for the discrete rational minimax approximation with SLSQP(Sequential
Least Squares Programming). SLSQP solves constrained optimization problems and
is available in the SciPy optimize package. We rewrite the minimax approximation
problem in terms of constrained optimization as follows:

min
e∈R,a∈Rn+1,b∈Rn

e

e ≥
∑m
i=0 aix

i

(1 +
∑n
i=1 bix

i)− f(x)

e ≤
∑m
i=0 aix

i

(1 +
∑n
i=1 bix

i)− f(x)

Before going into comparison with SLSQP, we first do a validation of the code.

8.1. Validation. If provided a polynomial or a rational function, our implemen-
tation should return the exact polynomial or rational within a single iteration. Here
we show that this is the case with two simple examples.

10 Abiy Tasissa

Example 1: Consider the polynomial defined in the following way.

f(x) = x2 and x ∈ (0, 1)

We use 100 equally spaced points between (0, 1). When we run the code, it returns
the following coefficients:

a0 = −1.04083409e− 17

a1 = 0.00000000e+ 00

a2 = 1.00000000e+ 00

and we know that b0 = 1.0. Since a2 = 1.0, we see that the code returns the polyno-
mial exactly in a single iteration.

Example 2: Consider the rational function defined in the following way.

f(x) = 1/(1 + x2) and x ∈ (0, 1)

We use 100 equally spaced points between (0, 1). When we run the code, it returns
the following coefficients:

a0 = 1.00000000e+ 00

b1 = 4.44089210e− 16

b2 = 1.00000000e+ 00

and we know that b0 = 1.0. Since a0 = 1.0 and b2 = 1.0, we see that the code returns
the rational function exactly in a single iteration.

8.2. Comparison with SLSQP. In this section, we compare the discrete mini-
max approximation employing Remez algorithm with the SLSQP algorithm. To make
a fair comparison between the two algorithms, we use the same number of points in a
given interval. We then specify the degree of the numerator and denominator of the
rational function. These two values will be the same for both algorithms. The two
algorithms then iterate through the discrete number of points to minimize the error.
As such, we take the number of iterations to be a good criteria in comparing these
two algorithms. We test this for different classes of functions and we also note how
well the function is approximated in each of these two methods by looking at the plots.

We first compare the number of iterations for different classes of functions. Table.
8.1 shows the comparison. All but two of the functions are evaluated at 100 points
in the interval (0, 1). For the sin(x) function, we use the interval (0, π) and for the
log(x) function, we use the interval (1, 2). We do this since log(0) is undefined if we
choose (0, 1) as the interval.

To see how well Remez algorithm compares with the SLSQP algorithm, we make
the plots of the functions above using the coefficients we obtain numerically. Figures
8.1, 8.2, 8.3 and 8.4 show the difference between the analytical plot and the numerical
plots. From the plots, we see that the Remez algorithm approximates the functions
better than the SLSQP algorithm and it does so with no need for multiple iterations.
In fact for the test functions considered here, it is hard to look the difference between
the analytic plot and the numerical plot based on Remez since they are on top of each
other.

Function Approximation and the Remez Algorithm 11

Function Degree of Rational Function(m,n) Iterations: Remez Iterations: SLSQP
x2 (2, 0) 1 5

1
1+x2 (0, 2) 1 8√
x (4, 2) 1 26

ex (1, 1) 3 10
sin(x) (3, 2) 2 25
log(x) (2, 2) 1 8

Table 8.1
Number of Iterations to converge for Remez and SLSQP algorithms for different functions

Fig. 8.1. f(x) =
√
x Fig. 8.2. f(x) = ex

9. Conclusion. We see that Remez algorithm is an efficient method to construct
the minimax rational function in the approximation of a discrete set of data. It takes
few iterations and does comparably better than a nonlinear optimizer like SLSQP.
However it is not always the case that, unlike the case for polynomials, the process of
finding rational functions doesn’t always converge[1] but for most common functions
the Remez algorithm leads to a good approximation.

Acknowledgments. The author thanks Professor Steven Johnson for suggesting
this topic and giving directions during office hours.

12 Abiy Tasissa

Fig. 8.3. f(x) =
√
x Fig. 8.4. f(x) = ex

REFERENCES

[1] H.M AntiaNumerical Methods for Scientists and Engineers, Birkhauser 2002
[2] Neal L. CarothersA Short Course on Approximation Theory, Lecture Notes at http://

personal.bgsu.edu/~carother/Approx.html

[3] E. Ward Cheney, and David R. Kincaid Numerical Mathematics and Computing, Cengage
Learning, 2012

[4] W.J CodyA survey of practical rational and polynomial approximation of functions, SIAM
Review, July 1970

[5] W.J CodyThe FUNPACK package of special function subroutines, ACM Trans. Math. Softw,
9, 1975

[6] Germund Dahlquist, and Ake BjorckNumerical Methods, Dover Books, 2003
[7] P.J DavisInterpolation and approximation, Dover Publications, New York, 1975
[8] W. Fraser,A Survey of methods of Computing Minimax and Near-Minimax Polynomial Ap-

proximations for functions of a Single Independent Variable, , Journal of the Association
for Computing Machinery,Vol 12, No. 3 (July, 1965), pp. 295-314

[9] F. W. Luttmannand and T. J. Rivlin, Some Numerical Experiments in the Theory of Poly-
nomial Interpolation, IBM Journal, May 1965, pp. 187-191

[10] Jean-Michel MullerElementary Functions: Algorithms and Implementation
[11] T.W Parks and J.H McClellanChebyshev approximation for nonrecursive digital filters with

linear phase,IEEE Trans. Circuit Theory, 1972
[12] E RemesSur la d etermination des polynomes dapprox imation de degr e donn ee, Comm. Soc.

Math. Kharkov 1934
[13] E Remesur le calcul effectif des polynomes dapproxi mation de Tchebychef, Compt. Rend.

Acad. Sci. 1934
[14] E Remesur un proc ed e convergent dapproximation s successives pour d eterminer les poly-

nomes dapproximation, Compt. Rend. A cad. Sci.1934
[15] Walter Rudin,Principles of Mathematical Analysis , McGraw-Hill, 1976
[16] K.G Stefens,The history of approximation theory: From Euler to Bernstein, Birkhauser,

Boston 2006
[17] Sherif A. Tawfik, Minimax Approximation and Remez Algorithm, Lecture Notes at http:

//www.math.unipd.it/~alvise/CS_2008/APPROSSIMAZIONE_2009/MFILES/Remez.pdf

[18] Lloyd N. Trefethen,Approximation Theory and Approximation Practice, SIAM, 2012
[19] Lloyd N. Trefethen,Barycentric Remez algorithms for best polynomial approximation in the

CHEBFUN system, Numerical Mathematics 2008
[20] L. Veidinger ,On the numerical determination of the best approximations in the Chebyshev

sense, Numer. Math, 1960, 99-105

http://personal.bgsu.edu/~carother/Approx.html
http://personal.bgsu.edu/~carother/Approx.html
http://www.math.unipd.it/~alvise/CS_2008/APPROSSIMAZIONE_2009/MFILES/Remez.pdf
http://www.math.unipd.it/~alvise/CS_2008/APPROSSIMAZIONE_2009/MFILES/Remez.pdf

